
WhatQuestions Do Programmers Ask About Configuration as
Code?

Akond Rahman, Asif Partho*, Patrick Morrison, and Laurie Williams
North Carolina State University, Nested Apps*

aarahman@ncsu.edu,asif@nestedapps.com*,pjmorris@ncsu.edu,williams@csc.ncsu.edu

ABSTRACT
Configuration as code (CaC) tools, such as Ansible and Puppet, help
software teams to implement continuous deployment and deploy
software changes rapidly. CaC tools are growing in popularity, yet
what challenges programmers encounter about CaC tools, have not
been characterized. A systematic investigation on what questions
are asked by programmers, can help us identify potential technical
challenges about CaC, and can aid in successful use of CaC tools. The
goal of this paper is to help current and potential configuration as code
(CaC) adoptees in identifying the challenges related to CaC through an
analysis of questions asked by programmers on a major question and
answer website. We extract 2,758 Puppet-related questions asked by
programmers from January 2010 to December 2016, posted on Stack
Overflow. We apply qualitative analysis to identify the questions
programmers ask about Puppet. We also investigate the trends in
questions with unsatisfactory answers, and changes in question
categories over time. From our empirical study, we synthesize 16
major categories of questions. The three most common question
categories are: (i) syntax errors, (ii) provisioning instances; and (iii)
assessing Puppet’s feasibility to accomplish certain tasks. Three
categories of questions that yield the most unsatisfactory answers
are (i) installation, (ii) security, and (iii) data separation. We also
observe 8 of the 16 question categories to have an increasing trend,
whereas, one identified question category has a decreasing trend.

KEYWORDS
challenge, configuration as code, continuous deployment, devops,
infrastructure as code, programming, puppet, question, stack over-
flow
ACM Reference Format:
Akond Rahman, Asif Partho*, Patrick Morrison, and Laurie Williams. 2017.
What Questions Do Programmers Ask About Configuration as Code?. In Pro-
ceedings of International Workshop on Rapid Continuous Software Engineering
(RCOSE’18). ACM, New York, NY, USA, 7 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Continuous deployment (CD) is a software engineering process
where software changes are automatically tested in a continuous
manner, and frequently deployed to production environments [17] [7].
Using CD, information technology (IT) organizations deploy soft-
ware changes rapidly, as often as twice a day, as is done by Face-
book [17] [11]. Practitioners have observed use of configuration
as code (CaC) tools such as Ansible 1 and Puppet 2, as an essential
1https://www.ansible.com/
2https://puppet.com/

RCOSE’18, RCOSE 2018, Gothenburg, Sweden
2016. ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

practice to implement CD [11]. CaC is the technique of defining
computing and network configurations through source code, which
can be stored in version control systems to allow reproducibility
and testing [7]. CaC is used to create and manage an automated
deployment pipeline that enables IT organizations to deploy their
software changes rapidly [7] [11]. As with all new technologies,
users of CaC tools experience challenges and ask questions on
how to overcome the challenges. For example, in an online forum
one programmer described how resolving Puppet discrepancies
could be challenging 3. Systematically identifying what questions
programmers ask about CaC can help current and potential CaC
adoptees. Such investigation can also provide insights on develop-
ment platforms that programmers use to manage infrastructure,
and functionalities that they want from CaC tool vendors.

The goal of this paper is to help current and potential configuration
as code (CaC) adoptees in identifying the challenges related to CaC
through an analysis of questions asked by programmers on a major
question and answer website.

In priorwork researchers havemined questions posted on programming-
related question and answer (Q&A) websites such as Stack Overflow
(SO), to identify questions asked by mobile programmers [19] [10]
and web programmers [1]. Researchers [22] [19] also quantified
which categories of questions receive more unsatisfactory answers
than others to gain insights about the identified challenges. On
Q&A websites, programmers describe the technical challenges they
face using a wide range of questions to seek help and advice. These
posted questions give researchers the opportunity to highlight the
knowledge needs of programmers [2]. Researchers [2] have also
used the posted SO questions to identify how programmers interest
in a topic evolves over time. In our research study, we systematically
investigate the categories of questions asked by programmers who
work with CaC tools. We answer the following research questions:
• RQ1: What questions do programmers ask about configu-
ration as code?

• RQ2: How many answers do configuration as code (CaC)-
related question categories yield?Howmanyquestionswith
unsatisfactory answers doCaC-related question categories
yield?

• RQ3: How many views do question categories related to
configuration as code yield?

• RQ4: What temporal trends do the question categories re-
lated to configuration as code exhibit?
We focus on the questions related to programming with Puppet,

a tool to implement CaC. We select Puppet because it is one of
the most popular CaC tools [8], and has been used by practition-
ers since 2005 [9]. We extract 2,758 Puppet-related questions from
SO, a popular programming-related question and answer (Q&A)
3https://redd.it/3yo7lf

Prep
rin

t

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


RCOSE’18, RCOSE 2018, Gothenburg, Sweden Akond Rahman, Asif Partho*, Patrick Morrison, and Laurie Williams

website for the period January 2010 to December 2016. We used
card sorting [23], a qualitative analysis technique, to identify the
question categories from the extracted questions. We use the times-
tamps of Puppet-related questions to examine temporal trends of
the question categories.

We list our contributions as following:
• A category of questions asked by programmers who work with
CaC;

• A ranking of the CaC-related question categories, sorted based
on amount of questions that have unsatisfactory answers; and

• A summary of temporal trends extracted for the identified ques-
tion categories
We organize the rest of the paper as following: Section 2 de-

scribes our methodology conducted for this paper. We present our
findings in Section 3. We list the limitations of our paper in Sec-
tion 4. Section 5 provides prior research work relevant to our paper.
Finally, we conclude the paper in Section 6.

2 METHODOLOGY
In this section, we first provide background information necessary
to conduct our methodology.

2.1 Background
CaC is a practice to specify the configurations of an environment
automatically in which software will be installed or tested [7]. CaC
helps in managing environment configurations on one or multiple
machines starting from installation, upgrading, and maintenance.
Practitioners attribute the concept of infrastructure as code to Chad
Fowler, in his blog published in 2013 4. The phrase ‘as code’ in IaC
corresponds to applying traditional software engineering practices,
such as code review and version control systems (VCS), for IaC
scripts [11][7]. To automatically provision infrastructure, program-
mers follow specific syntax, and write configurations in a similar
manner as software source code. IaC scripts use domain specific
language (DSL) [20].

Practitioners use automated tools such as Chef, and Puppet,
which are dedicated for implementing CaC. CaC scripts are also
known as ‘infrastructure as code’ (IaC) scripts [21] [7]. We chose
to focus on Puppet because it was first released in 2005 [9], and
since then Puppet is considered as one of the most popular tools
to implement CaC [8]. Compared to the release of Puppet, Chef is
relatively new, and our assumption is that the Puppet-related ques-
tions on SO will give us the opportunity to look at a representative
sample of questions needed for our research study.

For collecting CaC-related technical questions, we selected the
programming-related Q&A website SO. We selected SO because
this Q&A website is the most popular programming Q&A web-
site and has been extensively used in software engineering re-
search [22] [19] [2].

In SO, users can post questions that describe a specific problem
that they want to seek advice on [5]. Each question has a title that
provides a concise summary of what the question is about [5]. The
details of the question is presented in the body, where users can
describe the problem in detail with additional references, such as

4https://www.oreilly.com/ideas/an-introduction-to-immutable-infrastructure

web links, code snippets, and screenshots [5]. Each question can
have multiple views, multiple answers, and one accepted answer [5].
Views represent the number of total visits for a question by both
non-authenticated and authenticated users of the website [5]. An
answer is a solution for the provided question of interest [5]. An
accepted answer is an answer that was verified as satisfactory by
the user who posted the question [5]. Each question has one or
many tags. A tag is used to connect with advanced website users
so that the question has a higher probability of getting a quick
answer [5]. In our paper we used a dataset collected from the Stack
Exchange Data Explorer, on Dec 30, 2016. This dataset includes all
information related to SO, which includes questions, tags, answers
to questions etc.

2.2 Step One: Determining Tags
Tags provide a means to extract SO questions that belong to a
certain technology. Our assumption is by identifying the tags that
are related to Puppet, we will be able to collect a representable set
of Puppet-related questions posted on SO. We used the SO dataset
to determine the tags needed to extract Puppet-related questions.
We used the following two steps:

• First, we identify the tags that included the string ‘puppet’. We
extract these tags along with their description.

• Second, by manually reading the description of each tags we
determine which tag could be used for relevant content collection.
From the description, if we observe the tag to be related to Puppet,
we consider that tag for our paper. For example, from the tag
description “Puppet Enterprise is the commercially supported
and packaged release of Puppet.” for tag ‘puppet-enterprise’, we
observe tag ‘puppet-enterprise’ to be related to Puppet.

Upon completion of the above-mentioned steps, we obtain a list
of tags that are related to Puppet. We use these tags in Step Two.

2.3 Step Two: Content Collection
Using the tags identified from Step One, we obtain a set of ques-
tions posted on SO. For further analysis, we identify questions that
include at least one tag identified from Step One. For each of the
identified question we obtain the ID, title, body, creation date, the
count of views, and a flag that indicates whether or not the question
has an accepted answer. We used the collected dataset to extract
necessary content.

2.4 Step Three: Identifying Question
Categories

We use card sorting [23], a qualitative analysis to identify the ques-
tion categories from the collected Puppet-related questions. Card
sorting is a qualitative technique to identify categories from textual
artifacts [23]. We use card sorting because this method helps in
achieving insightful, non-overlapping categories, and is used widely
in software engineering research [23] [8]. We followed Zimmerman
et al. [23]’s recommendations and implemented card sorting in the
following three phases:

• Preparation: We collect the ID, title, and body of each Puppet-
related question for card sorting analysis.

Prep
rin

t



WhatQuestions Do Programmers Ask About Configuration as Code? RCOSE’18, RCOSE 2018, Gothenburg, Sweden

• Execution: The first and second author separately conduct card
sorting on the collected questions. For deriving the question
categories, each used the body and title of the collected questions.

• Analysis: Once the first and second author complete their card
sorting analysis, the derived question categories are cross-checked
by both authors. We apply negotiated agreement [3], where the
first and second author discussed to which question categories
they disagreed upon. For each of the question category, for which
both first and second author agreed upon, is identified as a ques-
tion category.

2.5 Step Four: Analysis
We use the list of CaC-related question categories from Step Three
to answer the four research questions as following:

2.5.1 RQ1: What questions do programmers ask about configu-
ration as code (CaC)?. We answer RQ1 by first, providing the list
of question categories that we identified from Step Three. Next,
we calculate the proportion of questions that belong to each ques-
tion category using ‘proportion of questions for category x , (Qx )’.
We compute the proportion of questions that belong to question
category x using Equation 1

Q(x ) =
total count of questions included in category x

total count of questions related to Puppet
(1)

2.5.2 RQ2: How many answers do configuration as code (CaC)-
related question categories yield? How many questions with unsatis-
factory answers do CaC-related question categories yield? We answer
the first part of RQ2 by calculating the answer to question ratio.
We use the following metric in this regard: ‘Answer to Question
Ratio for category x , (AQ(x ))’: We use Equation 2 to measure AQ:

AQ(x ) =
total count of answers for questions included in category x

total count of questions included in category x
(2)

A question with no accepted answer may imply that the pro-
grammer who posted the question was not satisfied with the posted
answers. A question might not have an accepted answer due to
emerging technologies and limited support from Q&A community.
Questions related to CaC can have unaccepted answers that might
indicate a key category and needs support. Analysis of the second
part of RQ2 involves quantifying which of the CaC-related question
categories yield more questions with unsatisfactory answers than
other categories. Similar to prior research [19] that has used the
concept of satisfactory and unsatisfactory answers, we use the met-
ric ‘unsatisfactory answers for category x , UNS(x)’. We calculate
UNS(x ) using Equation 3:

UNS(x ) =
questions with unsatisfactory answers included in category x

questions included in category x
(3)

Answer to RQ2 includes the UNS scores of each identified ques-
tion category, and a ranked order of the identified question cate-
gories sorted based on their UNS scores.

2.5.3 RQ3: How many views do configuration as code (CaC)-
related question categories yield? Programmers can view a question
and its answers without becoming a registered user on SO. By
capturing the view count of each identified category we can capture
both, registered and non-registered users’ interest in a particular
question category. We use the metric ‘view count per question’,
to answer RQ3. For category x , view count per question presents
the count of views per questions included in category x . We use
Equation 4 to calculate VQ:

VQ(x ) =
summation of view count for all questions included in category x

total count of questions included in category x
(4)

2.5.4 RQ4: What temporal trends do the configuration as code
(CaC)-related question categories exhibit? Similar to prior research [1] [2],
we investigate temporal trends to identify how the amount of ques-
tions related to the identified question categories evolves over time.
We determine the trends of category x using the following step: for
each monthm when one or more CaC-related questions are created,
we calculate temporal_trend of category x using Equation 5

temporal_trend(x ,m) =
count of questions posted in monthm that belong to category x

count of questions posted in monthm
(5)

We apply the Cox-Stuart test [4] to determine if the exhibited
trend is significantly increasing or decreasing. The Cox Stuart test
is a statistical technique that compares the earlier data points to the
later data points in a time series to determine whether or not the
trend observant from the time series data is increasing or decreasing
with statistical significance. We use a 95% statistical confidence
level to determine which topics exhibit increasing or decreasing
trends. To determine temporal trends of each category we apply
the following strategy:
• if Cox-Stuart test output states the temporal frequency values are
‘increasing’ with a p-value < 0.05, we determine the temporal
trend to be ‘increasing’.

• if Cox-Stuart test output states the temporal frequency values are
‘decreasing’ with a p-value < 0.05, we determine the temporal
trend to be ‘decreasing’.

• if we cannot determine if the temporal trend is ‘increasing’ or
‘decreasing’, then we determine the temporal trend to be ‘consis-
tent’.

3 RESULTS
We use this section to provide our findings and answer the four
research questions:

3.1 Step One: Determining Tags
Altogetherwe identify nine tags that are related to Puppet: ‘librarian-
puppet’, ‘puppet-3’, ‘puppetlabs-aws’, ‘puppetlabs-mysql’, ‘puppet-
provider’, ‘puppet’, ‘puppet-enterprise’, ‘puppetlabs-apache’, and
‘rspec-puppet’. We used these tags to extract necessary Puppet-
related questions.

Prep
rin

t



RCOSE’18, RCOSE 2018, Gothenburg, Sweden Akond Rahman, Asif Partho*, Patrick Morrison, and Laurie Williams

3.2 Step Two: Content Collection
From the collected nine tags we identify 2,758 Puppet-related ques-
tions that spanned from January 2010 to December 2016.

3.3 Step Three: Identifying Question
Categories

The first and second author respectively, identify 18 and 22 unique
question categories from the collected 2,758 Puppet-related ques-
tions. The question categories identified by the two authors are
susceptible to bias. We account for this bias by cross-checking the
identified question categories, and including question categories to
which both authors agreed upon. Altogether the first and second
author agreed upon 16 technical question categories.

3.4 Step Four: Analysis
We answer the four research questions in the following subsections:

3.4.1 Answer to RQ1: What questions do programmers ask about
configuration as code (CaC)?. We identify 16 unique question cat-
egories related to Puppet presented in Table 1. In Table 1 each
category, a brief description of the question categories, and a repre-
sentative example is presented respectively, in the columns ‘Cate-
gory’, ‘Description’, and ‘Example’. In the ‘Category’ column the
count of each question for each category is included parenthesis.

In Table 2, we report the values of four metrics for each identi-
fied question category. Table 2 is sorted based on the proportion of
questions for category (Q) metric. The ‘Category’ column presents
each of the 16 unique question categories. The proportion of ques-
tions (Q), answer to question ratio (AQ), view count per question
(VQ), and unsatisfactory answers (UNS) scores of each category is
respectively presented in columns ‘Q (%)’, ‘AQ’, ‘VQ’, and ‘UNS (%)’.
According to Table 2, the top three question categories based on the
Q metric are Syntax Error, Provisioning, and Feasibility. Together
these three categories account for 46.2% of the total questions.

3.4.2 Answer to RQ2: How many answers do configuration as
code (CaC)-related question categories yield? How many questions
with unsatisfactory answers do CaC-related question categories yield?
According to Table 2, the answer to question ratio (AQ) scores of
all 16 question categories varied between 1.0 and 1.4. The unsatis-
factory answer for each category (UNS) score varied between 61.8%
and 34.2%. We also observe that 11 of the 16 identified question
categories to have UNS score of more than 50.0%. On average, our
findings indicate that a Puppet-related question has one answer,
and the posted answer might not be satisfactory for majority of the
question categories.

3.4.3 Answer to RQ3: How many views do configuration as code
(CaC)-related question categories yield? From Table 2, we observe 10
of the 16 question categories to have a view count per question (VQ)
score of at least 1000. We notice that even though Puppet-related
questions on average receive one answer, and the posted answers
do not always yield satisfactory answers, the posted questions have
relevance amongst programmers, as observed from VQ. Table 3
presents an ordered list of the question categories sorted based on
VQ, in a descending order. We also present the question categories
in a descending order, sorted based on AQ and UNS.

The ranking of the 16 question categories help us to make further
observations:

• Template ranks first based on answer count (AQ) and last based
on unsatisfactory answers (UNS). Overall, we observe Template-
related questions to be well addressed, than other categories.

• Security ranks second in terms of views and unsatisfactory an-
swers, but ranks 15th based on answer count. This observation
suggests that even though security-related question categories
are common amongst programmers, they often do not get satis-
factory answers from the SO community.

• Data Separation ranks as third lowest based on answer count,
and third highest with respect to unsatisfactory answers. This
observation implies that in general, the SO community has pro-
vided unsatisfactory answers in resolving questions related to
Data Separation.

• Testing ranks 15th based on views and unsatisfactory answers,
implying even though Testing draws lesser interest amongst
programmer, the questions are well addressed compared to that
of majority of the question categories.

3.4.4 Answer to RQ4: What temporal trends do the configura-
tion as code (CaC)-related question categories exhibit? We have
presented the temporal_trend values for each question category
in Figure 1. Figure 1 presents a scatterplot with smoothing plot
with the trends highlighted. Whether or not these trends are signif-
icantly decreasing or increasing can be understood from Table 4.
Categories for which we observe p −value < 0.05, are highlighted
in grey. From Table 4 we observe eight question categories with
‘increasing’ trends, and one category with ‘decreasing’ trend.

Tables 4 and 3 help us to make the following observations:

• Three of the top five question categories with unanswered ques-
tions have ‘increasing trends’. Our findings suggest that the three
categories Installation, Data Separation and Network, is increas-
ingly getting attention amongst programmers, but their questions
are not well-answered.

• Posting of questions related to Feasibility is decreasing amongst
programmers, according to Cox-Stuart test. We also observe that
Feasibility is ranked third highest based on answer count, and
fifth highest based on view count. We suspect that even though
programmers are interested in feasibility-related tasks, they may
be getting their needed information from other sources such as
existing SO posts, blog posts, and video tutorials.

4 THREATS TO VALIDITY
We discuss the threats of the paper as following:

• Selection of Q&A website: We only have used questions posted
on SO, and did not consider other Q&A websites. In the future,
we plan to add other Q&A websites.

• Selection of CaC tools: We have not considered questions related
to other CaC tools, such as Ansible and Chef. In the future, we
will apply our analysis on questions related to Ansible and Chef.

• Bias in identifying question categories: The identified 16 question
categories are susceptible to bias. We have accounted for this bias
by cross-checking the derived question categories, and including
question categories to which both individuals agreed.

Prep
rin

t



WhatQuestions Do Programmers Ask About Configuration as Code? RCOSE’18, RCOSE 2018, Gothenburg, Sweden

Table 1: Answer to RQ1. We identify 16 question categories. References to all the examples are available online [14]

Category (Count) Description Example
Syntax Error (560) Programmers ask questions about resolving syntax errors related to Puppet utilities, such as attributes, and data types . Even though

the Puppet documentation claims that using this language “does not require much formal programming experience”, we observe the
most frequently occurring question category to be related to syntax.

How to fix ‘can’t convert
String into Integer’ after
calling the split function
in Puppet?

Provisioning (386) Programmers ask about how to use Puppet to provision containers, virtual machines and cloud instances. We observe programmers
to use Puppet to provision instances on a wide range of platforms, such as Microsoft Azure 5 .

Provisioning with Puppet
using Vagrant, correct ap-
proach

Feasibility (329) We observe programmers to ask about in assessing the feasibility of Puppet to accomplish a certain task. For feasibility-related
questions, we observe programmers describing a use case or a hypothetical scenario, and asking SO users if Puppet can be used for
the given scenario or use case.

How to create hierarchy in
Puppet

Installation (262) Programmers ask about installing the Puppet tool, installing open source Puppet modules, and installing software packages using
Puppet. On SO, programmers seek information about pre-built modules that can be installed and inherited to resolve specific tasks.
While installing these modules, programmers encounter errors and ask about how these errors can be resolved.

Trouble Using Puppet
Forge Module exam-
ple42/splunk

Filesystem (229) Programmers’ questions about file and file system includes mounting logical volumes, and performing file operations . The Puppet
documentation provides instructions on how Puppet components related to file operations, such as the ‘file’ resource type, could be
used. Programmers might be using these components to fit their own needs and finding existing documentation insufficient, as one
programmer stated: “I can’t believe how difficult Puppet is being with Windows - particularly Windows permissions!"

How to remove all
/etc/*.txt files with
Puppet?

Security (160) Puppet provides utilities for software security. While using these utilities, programmers face difficulties. We observe programmers
facing difficulties in creating certificate authority (CA) using Puppet , managing built-in SSL certificates of Puppet , and automated
management of user credentials ). Even though Puppet is advertised as an easy-to-use tool to implement security and maintain
compliance, we observe programmers facing challenges while using Puppet for security.

External CA configuration
with Puppet agent

Data Separation
(132)

Programmers ask about data separation from scripts while programming with CaC. CaC tools such as Puppet, provide utilities to
separate data from scripts. Hiera is an example utility provided by Puppet, using a key-value lookup system 6 . Puppet users face
challenges when using Hiera that includes solution to Hiera-related errors, and usage of parameters in Hiera.

Evaluation Error while us-
ing the Hiera hash in Pup-
pet

Troubleshooting
(127)

Programmers ask questions when they encounter unexpected behavior . They also query about tools to troubleshoot Puppet files.
As one programmer stated: “I’m learning Puppet and the biggest frustration I have with the entire paradigm is the try/run/fix
development process I’m using to build functional Puppet code...I know writing a debugger for Puppet would require some creativity
given it’s nature but I think this is something the community could really benefit from."

Why Puppet beaker
fails to resolve role
“agent", whereas mas-
ter/database/dashboard
works just fine?

Network (105) We observe programmers to ask questions about when they perform network-related tasks. Examples of such questions include
configuring network interfaces, and extracting IP addresses.

How do I use Puppet man-
ifest to configure network
settings?

Environment Vari-
ables (95)

Environment variables, for example, kernel version, host name, and type of operating system are managed using CaC tools such as
Puppet [13]. Facter is a Puppet utility that discovers and manage environment variables in local/remote hosts [13]. We observe
programmers facing challenges while working with Puppet and environment variables.

How to schedule Puppet
custom facts to execute ev-
ery X hours?

Testing (83) Testing-related questions are also common amongst programmers. Examples of testing-related questions include mocking, code
coverage of Puppet code, and testing Puppet code that has dependencies.

How to Measure Code Cov-
erage: Rspec-Puppet?

Template (73) Configurations can be rendered using Embedded Ruby (ERB)-based templates in Puppet [13]. Programmers ask questions about while
working with templates, for example, criteria-based template selection, and analyzing output logs generated from ERB templates.

How do I use the output of
a command in a template
in Puppet?

Dependencies (70) In Puppet, a module is a collection of Puppet files grouped together based on a common functionality. One or more Puppet files
can be dependent on one or more modules. We observe programmers to ask about dependencies, for example installing Puppet
module dependencies, and resolving dependency errors . In case of dependency problems, error messages can be confusing, as one
programmer pointed out “I’m getting a warning from Puppet about an unmet dependency, and yet it appears the dependency is met.
I’m more than a bit confused about this error message."

dependency error while
running windows feature

Database (58) Programmers ask questions related to database operations for vendors such as MySQL, and MongoDB. Common database operations
include creating database backups, creating tables, and managing SQL scripts. We also observe programmers using Puppet to install
databases on multiple platforms such as Ubuntu and containers.

How to update MySQL Ta-
ble with Puppet?

Resource Ordering
(49)

Puppet resources such as files, classes, and manifests are executed randomly. Programmers ask questions about what mechanism can
be used to control the execution order of Puppet manifests , and analyzing the errors while applying resource ordering mechanisms.

Puppet Resource Ordering
not working

Daemon Services
(40)

In CaC, daemon services such as Puppet Agent retrieves configuration information and applies it to local or remote hosts [13].
Programmers work with these agents to automate infrastructure, and face challenges with Puppet agents. Examples of such challenges
include seeking mechanisms on implementing a specific task with Puppet agent, and resolving Puppet agent discrepancies.

Puppet agent: provider Git
is not functional on this
host

5 RELATEDWORK
Our paper is related to empirical studies that have focused on CaC
technologies, such as Puppet. Sharma et al. [21] investigated smells
in CaC scripts and proposed 13 implementation and 11 design con-
figuration smells. Hanappi et al. [6] investigated how convergence
of Puppet scripts can be automatically tested, and proposed an
automated model-based test framework. Jiang and Adams [8] inves-
tigated the co-evolution of CaC scripts and other software artifacts,
such as build files and source code. They reported CaC scripts to
experience frequent churn. Rahman et el. [15] investigated which
factors influence usage of CaC tools. In a recent work, Rahman
and Williams [16] characterized defective CaC scripts using text

mining, and created prediction models using text feature metrics.
The above-mentioned studies motivate us to explore the area of
CaC by taking a different stance: we analyze CaC-related questions
posted on Stack Overflow (SO) to identify the question categories
related to CaC programming.

Our paper is also related to prior research studies that have used
data extracted fromQ&Awebsites. Barua et al. [2] studied the topics
and trends in SO questions and answers spanning from July 2008 to
September 2010. They observed web and mobile application devel-
opment to gain interest over time. They also observed developers
to ask about a wide range of questions, such as career advice, C#
syntax, and version control systems. Bajaj et al. [1] studied SO data

Prep
rin

t



RCOSE’18, RCOSE 2018, Gothenburg, Sweden Akond Rahman, Asif Partho*, Patrick Morrison, and Laurie Williams

Data Seperation Feasibility Filesystem Network Provisioning Security Syntax Error Troubleshooting

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

0.0

0.2

0.4

0.6

Month

Te
m

po
ra

l T
re

nd

a

Daemon Services Database Dependency Env. Variables Installation Reso. Ordering Template Testing

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

20
10
-07

20
16
-03

20
15
-02

20
14
-01

20
12
-12

0.00

0.25

0.50

0.75

1.00

Month

Te
m

po
ra

l T
re

nd

b

Figure 1: Temporal trend of each identified question category. Figures 1a, and 1b present the temporal_trend values for the 16
question categories.

Table 2: Answer to RQ1, RQ2, AND RQ3: Summary of Iden-
tified Question Categories

Category Q(%) AQ UNS(%) VQ
Syntax Error 20.3 1.1 48.9 1141.8
Provisioning 14.0 1.3 55.6 1356.1
Feasibility 11.9 1.3 52.5 1294.2
Installation 9.5 1.1 61.8 1177.7
Filesystem 8.3 1.2 52.8 1295.0
Security 5.8 1.0 59.3 1546.9

Data Separation 4.7 1.1 56.0 614.7
Troubleshooting 4.6 1.1 47.2 1222.8

Network 3.8 1.0 55.2 673.1
Environment Variables 3.4 1.2 51.5 1138.3

Testing 3.0 1.2 44.5 575.2
Template 2.6 1.4 34.2 2558.0

Dependencies 2.5 1.1 51.4 944.5
Database 2.1 1.2 53.4 1021.0

Resource Ordering 1.7 1.3 46.9 799.3
Daemon Services 1.4 1.2 52.5 569.3

to study common challenges in web development. They observed
interest in web development is drawing increasing interest amongst
SO participants. Bajaj et al. [1] also observed that form validation
issues and new HTML features to have more difficulty than other
challenges. Rosen and Shihab [19] performed an empirical study
on SO data to identify the discussion topics related to mobile ap-
plication development. They found that mobile developers most
often asked about app distribution, mobile development libraries,
and user interface (UI) development. Pinto et al. [12] analyzed SO

Table 3: Answer to RQ3: Ranked Order of Identified Ques-
tion Categories

Metric Category (Sorted in a Decreasing Order by Metric, from left to
right)

AQ Template, Resource Ordering, Feasibility, Provisioning, Daemon Ser-
vices, Filesystem, Database, Testing, Environment Variables, Installa-
tion, Syntax Error, Troubleshooting, Dependencies, Data Separation,
Security, Network

UNS Installation, Security, Data Separation, Provisioning, Network, Database,
Filesystem, Feasibility, Daemon Services, Environment Variables, De-
pendencies, Syntax Error, Troubleshooting, Resource Ordering, Testing,
Template

VQ Template, Security, Provisioning, Filesystem, Feasibility, Troubleshoot-
ing, Installation, Syntax Error, Environment Variables, Database, De-
pendencies, Resource Ordering, Network, Data Separation, Testing,
Daemon Services

posts to identify questions related to energy consumption. They
identified five main themes of questions: ‘measurement’, ‘general
knowledge’, ‘code design’, ‘context specific’, and ‘noise’. Reboucas
et al. [18] studied the use of Swift programming language on SO,
and observed that even though programmers find Swift easy to
understand, 17.5% of the posted questions are related to the basic
elements of Swift.

The above-mentioned studies indicate that Q&A websites pro-
vide researchers opportunity to analyze the question categories
of programmers that are related to energy issues of software, mo-
bile development, and web development. We take inspiration from

Prep
rin

t



WhatQuestions Do Programmers Ask About Configuration as Code? RCOSE’18, RCOSE 2018, Gothenburg, Sweden

Table 4: Answer to RQ4: Temporal Trends

Category Cox Stuart, p-value Trend
Syntax Error ⇑, 0.02 Increasing
Provisioning ⇑, 0.5 Consistent
Feasibility ⇓, 0.02 Decreasing
Installation ⇑, 0.01 Increasing
Filesystem ⇑, 0.16 Consistent
Security ⇑, 0.09 Consistent

Data Separation ⇑, < 0.001 Increasing
Troubleshooting ⇑, 0.06 Consistent

Network ⇑, < 0.001 Increasing
Environment Variables ⇑, 0.01 Increasing

Testing ⇑, < 0.001 Increasing
Template ⇑, 0.43 Consistent

Dependencies ⇑, < 0.001 Increasing
Database ⇑, 0.50 Consistent

Resource Ordering ⇑, 0.24 Consistent
Daemon Services ⇑, 0.008 Increasing

these studies and focus our research efforts in identifying question
categories related to CaC.

6 CONCLUSION
Similar to any new technology that is slowly getting popular, pro-
grammers ask questions about CaC and seek solutions to answer
the questions. CaC is a fundamental pillar to implement continuous
deployment, and by identifying the questions programmers ask
about, we can understand in which areas programmers are facing
challenges with. In this paper, we focus on a popular CaC tool, Pup-
pet, and have analyzed 2,758 questions related to Puppet. We have
identified 16 high-level questions using card sorting. We observe
that questions related to Syntax Errors to appear most frequently,
but questions related to Installation yield the most unsatisfactory
answers. We observed Template-related questions to have the most
views, on average. Based on our findings we recommend:
• development of specialized integrated development envi-
ronments (IDEs) for CaC so that programmers can get assis-
tance on questions they want answers from, for example, syntax,
dependencies, and clarification on tutorials;

• future research in CaC that will investigate why programmers
ask the identified question categories, and which of the categories
are conceptual or implementation-related; and

• future research in CaC that will investigate if the identified
questions are related with quality of CaC scripts, such as defects,
anti-patterns, and security issues.

REFERENCES
[1] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2014. Mining Questions

Asked by Web Developers. In Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR 2014). ACM, New York, NY, USA, 112–121.
https://doi.org/10.1145/2597073.2597083

[2] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What Are
Developers Talking About? An Analysis of Topics and Trends in Stack Over-
flow. Empirical Softw. Engg. 19, 3 (June 2014), 619–654. https://doi.org/10.1007/
s10664-012-9231-y

[3] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013.
Coding in-depth semistructured interviews: Problems of unitization and inter-
coder reliability and agreement. Sociological Methods & Research 42, 3 (2013),
294–320.

[4] D. R. Cox and A. Stuart. 1955. Some Quick Sign Tests for Trend in Location and
Dispersion. Biometrika 42, 1/2 (1955), 80–95. http://www.jstor.org/stable/2333424

[5] Stack Exchange. 2017. Stack Exchange. https://data.stackexchange.com/. (2017).
[Online; accessed 04-12-2017].

[6] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting
Reliable Convergence for Configuration Management Scripts. SIGPLAN Not. 51,
10 (Oct. 2016), 328–343. https://doi.org/10.1145/3022671.2984000

[7] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Re-
leases Through Build, Test, and Deployment Automation (1st ed.). Addison-Wesley
Professional.

[8] Yujuan Jiang and Bram Adams. 2015. Co-evolution of Infrastructure and Source
Code: An Empirical Study. In Proceedings of the 12th Working Conference on
Mining Software Repositories (MSR ’15). IEEE Press, Piscataway, NJ, USA, 45–55.
http://dl.acm.org/citation.cfm?id=2820518.2820527

[9] Spencer Krum, William Van Hevelingen, Ben Kero, James Turnbull, and Jeffrey
McCune. 2013. Pro Puppet (2nd ed.). Apress, Berkely, CA, USA.

[10] M. Linares-Vasquez, B. Dit, and D. Poshyvanyk. 2013. An exploratory analysis of
mobile development issues using stack overflow. In 2013 10th Working Conference
on Mining Software Repositories (MSR). 93–96. https://doi.org/10.1109/MSR.2013.
6624014

[11] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman, J.
Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and L. Williams. 2017. The
Top 10 Adages in Continuous Deployment. IEEE Software 34, 3 (May 2017), 86–95.
https://doi.org/10.1109/MS.2017.86

[12] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Mining Questions About
Software Energy Consumption. In Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR 2014). ACM, New York, NY, USA, 22–31.
https://doi.org/10.1145/2597073.2597110

[13] Puppet. 2017. Puppet Documentation. https://docs.puppet.com/. (2017). [Online;
accessed 04-01-2018].

[14] Akond Rahman. 2018. Reference to Examples. http://tiny.cc/example-reffs-so.
(2018). [Online; accessed 30-01-2018].

[15] Akond Rahman, Asif Partho, David Meder, and Laurie Williams. 2017. Which
Factors Influence Practitioners’ Usage of Build Automation Tools?. In Proceedings
of the 3rd International Workshop on Rapid Continuous Software Engineering
(RCoSE ’17). IEEE Press, Piscataway, NJ, USA, 20–26. https://doi.org/10.1109/
RCoSE.2017..8

[16] Akond Rahman and Laurie Williams. 2018. Characterizing Defective Config-
uration Scripts Used for Continuous Deployment. In 2018 IEEE International
Conference on Software Testing, Verification and Validation (ICST). To appear.
Pre-print: http://akondrahman.github.io/papers/icst2018_tm.pdf.

[17] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin. 2015. Synthesizing
Continuous Deployment Practices Used in Software Development. In 2015 Agile
Conference. 1–10. https://doi.org/10.1109/Agile.2015.12

[18] M. Reboucas, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor. 2016. An
Empirical Study on the Usage of the Swift Programming Language. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. 634–638. https://doi.org/10.1109/SANER.2016.66

[19] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? A large scale study using stack overflow. Empirical Software Engineering
21, 3 (01 Jun 2016), 1192–1223. https://doi.org/10.1007/s10664-015-9379-3

[20] Rian Shambaugh, AaronWeiss, and Arjun Guha. 2016. Rehearsal: A Configuration
Verification Tool for Puppet. SIGPLAN Not. 51, 6 (June 2016), 416–430. https:
//doi.org/10.1145/2980983.2908083

[21] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your
Configuration Code Smell?. In Proceedings of the 13th International Conference
on Mining Software Repositories (MSR ’16). ACM, New York, NY, USA, 189–200.
https://doi.org/10.1145/2901739.2901761

[22] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What
Security Questions Do Developers Ask? A Large-Scale Study of Stack Overflow
Posts. Journal of Computer Science and Technology 31, 5 (01 Sep 2016), 910–924.
https://doi.org/10.1007/s11390-016-1672-0

[23] T. Zimmermann. 2016. Card-sorting: From text to themes. In Perspectives on Data
Science for Software Engineering, Tim Menzies, Laurie Williams, and Thomas
Zimmermann (Eds.). Morgan Kaufmann, Boston, 137 – 141. https://doi.org/10.
1016/B978-0-12-804206-9.00027-1

Prep
rin

t

https://doi.org/10.1145/2597073.2597083
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
http://www.jstor.org/stable/2333424
https://data.stackexchange.com/
https://doi.org/10.1145/3022671.2984000
http://dl.acm.org/citation.cfm?id=2820518.2820527
https://doi.org/10.1109/MSR.2013.6624014
https://doi.org/10.1109/MSR.2013.6624014
https://doi.org/10.1109/MS.2017.86
https://doi.org/10.1145/2597073.2597110
https://docs.puppet.com/
http://tiny.cc/example-reffs-so
https://doi.org/10.1109/RCoSE.2017..8
https://doi.org/10.1109/RCoSE.2017..8
https://doi.org/10.1109/Agile.2015.12
https://doi.org/10.1109/SANER.2016.66
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1145/2980983.2908083
https://doi.org/10.1145/2980983.2908083
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1016/B978-0-12-804206-9.00027-1
https://doi.org/10.1016/B978-0-12-804206-9.00027-1

	Abstract
	1 Introduction
	2 Methodology
	2.1 Background
	2.2 Step One: Determining Tags
	2.3 Step Two: Content Collection
	2.4 Step Three: Identifying Question Categories
	2.5 Step Four: Analysis

	3 Results
	3.1 Step One: Determining Tags 
	3.2 Step Two: Content Collection
	3.3 Step Three: Identifying Question Categories
	3.4 Step Four: Analysis

	4 Threats to Validity
	5 Related Work
	6 Conclusion
	References



